Серия отличных роликов, которые кратко и доступно поясняют суть археологических экспериментов, реконструирующих различные первобытные технологии. Для удобства просмотра серия разбита на несколько частей по 10 видео в каждой. Под катом еще 9 серий. Описания пока что на языке оригинала, но по мере появления свободного времени они будут переводиться на русский.

Часть 1 >>
Часть 3 >>

1. Primitive Technology: Bow and Arrow

(Видео на превью записи)
I made this bow and arrow using only primitive tools and materials.The bow is 1.25 m (55 inches) long and shoots 60 cm (2 feet) long arrows. I don’t know the draw weight — safe to say greater than 15 kg (35 pounds) perhaps? The stave was made from a tree that was cut with a stone axe and split in half with a stone chisel. I don’t know it’s name but it’s common here and is the same wood I use for axe handles (probably Northern Olive (Chionanthus ramiflora). One half was used for the bow and was cut to a length of 1.25 m (50 inches). The limbs of the bow were carved with various stone blades so that the limbs tapered in width, and to a lesser extent depth, towards the tips. The middle of the bow was narrowed in width to form a handle about 12.5 cm (5 inches) long.

The string was made from the inner bark of a fibrous tree. It was separated into thin strips and left to dry. Then it was twisted into cordage.

Arrows were made of the same wood as the bow and were 60 cm (2 feet) long. A notch was carved into the back to accept the bow string. They were fletched with bush turkey feathers picked up from the ground (no turkeys were harmed in the making of this video). A feather was split in half and cut into 3 lengths then resin and bark fiber attached the fletching on to the arrows. The tip of the arrow was fire hardened and sharpened to a point. The fletching was trimmed using a hot coal. Each arrow took about an hour to make. A quiver was made of bark to hold the arrows. Importantly, the quiver was worn on the back in the historically accurate style of native American and African archers- not on the hip like medieval European archers (see back quiver: https://en.wikipedia.org/wiki/Quiver ).

I cleared a shooting range with a semi rotten log as a target instead of a hay bale. At 10 meters the accuracy was better than 50 % for this narrow target and the arrows stuck into the wood enough so that they were difficult to pull out. The bow was durable, shooting about 200-300 times with the string breaking only 3 times. I made a back up string and repaired them by splicing the ends back together.

In conclusion this was an easy bow to make. The short design makes it easy to find a straight piece of wood for the stave. A short string is also easy to make and short arrow shafts are easy to find. Short bows shoot fast and are easy to carry in thick forest. The dimensions of the bow were based on those given in the SAS Survival Handbook by john Lofty Wiseman. but instead of carving it from a stave from the start, I split the stave and then carved it. I think this requires less time, effort and skill. It also gives a flat bow design that’s unlikely to break. It does require wood that doesn’t twist much when split though.

2. Primitive Technology: Sling


Добавлено: 27 нояб. 2015 г.

A sling is a weapon used to fire rocks farther and harder than could be thrown by hand alone. I made this sling from bark fiber that I made into cord. The cord was then tied in such a way to produce an area in the middle with three cords. A strip of the same bark fiber was woven between these to form a pouch. A loop was tied at one end of the sling and a knot tied in the other.

To use it, the loop is slipped over the finger and the knot is held down with the thumb. A stone is placed in the pouch and the sling swung over head. At the appropriate time the sling is swung forward in a throwing action and the knot held in the hand is let go. This causes the pouch to open and the stone to fly (hopefully) towards the target.

I hadn’t used a sling for eight years but the first target I set up and filmed, a potsherd on a stick at 10 m, was hit first go! Next I set up a log at 20 m and required more practice. Targets of potsherds and tiles at 10 m were set up in a clearing. Tiles on sticks at 15 m were set up in a stretch of creek. The last shots are back in the clearing at 10 m.

Learning to use the sling is difficult and practice is necessary. When aiming line up the swinging plane of the sling with the target to determine Y-axis aspect and use release timing to determine x-axis aspect. With timing (right handed) too early and the stone will got to the right, too late and it will go left. Practice to make it go at the right time. Use larger stones as they swing slower and are easier to time. Use smooth stones so they fly straight and don’t cling to the pouch when released.

The advantage of the sling is that it’s easy to make, portable and the ammunition (stones) are every where. The disadvantages are it’s difficult to learn to use accurately, noise and movement give it away when used, it can’t penetrate a target like an arrow (unless using some kind of weighted dart) and it can’t be fired in thick forest. Interestingly, the sling has a range comparable to a bow. From my research, the record for the longest sling shot was 505 m and that of the bow just under 500 m. For some great information on slings and slinging look at: http://www.slinging.org/.

3. Primitive Technology: Baskets and stone hatchet


Добавлено: 25 дек. 2015 г.

I made 2 types of basket and a celt hatchet. The first type of basket made was a coil basket. Bunches of palm leaves where wrapped in thin strips of lawyer cane to for a coil. This was then coiled into a spiral with each coil being tied to the last to keep it in place. This was done by sewing a new section of coil to the previous one. The basket was given a flat base so it could stand up but could be made any shape.

The second basket was made of lawyer cane. It started with thick strips of cane placed on the ground crossing in the centers to form an asterix shape. Importantly another half a lawyer strip was added so that the number of spokes the basket had was odd- even numbers don’t work with this type of basket. The canes were tied together in the center with a strip of bark and a piece of cane was woven in a spiral around the spokes like a spider web. When the base was wide enough the spokes were bent up to form the vertical sides of the basket. The weaving continued up the walls to the top and the ends of the spokes folded down back into the basket.

The coil method was very time consuming (about a week on and off) and made a heavy basket but used simple materials and had few gaps in it. Long grass could be used instead of palm leaves and any type of ties could be used to bind the coils. This type of basket can look very neat if done carefully (the one I made was rough). Also I would add that circular or rectangular mats might be made using this method and these materials. This might provide thick padding against the ground for sitting and sleeping and when finished could be rolled up and stored out of the way.

The woven cane baskets were much faster to make (2 or 3 hours each including harvesting materials). They used fewer materials and were lighter too. I could have easily made them bigger but wanted them to fit through the narrow door of the tiled hut.

The baskets will be used mainly for storing charcoal inside huts out of the rain but are also useful for carrying leaf mulch for the garden. They have flat bases meaning they can stand upright and even be stacked on top of each other.

I also made a small celt hatchet for lighter work. The big celt I made is useful for chopping bigger trees but is overkill for saplings and smaller trees. The method used was basically the same for the big celt though this time I used no fire hardening. The handle came from a branch cleared from the the sweetpotato patch and had sat for a few months seasoning on the ground. It was much harder to shape than green wood but was hard enough to not need fire hardening. So far I’ve used it without the handle splitting though the basalt head chipped when trying to chop dry eucalyptus branches (an especially hard wood)- I re sharpened it and it works on other woods ok.

4. Primitive Technology: Cord drill and Pump drill


Добавлено: 22 янв. 2016 г.

I made a cord drill and then upgraded it to a pump drill. A cord drill is basically a spindle with a fly wheel attached so it looks like a spinning top. the middle of a piece of cord is then put into a notch at the top of the spindle. The ends of the cord are then wrapped around the spindle and then pulled quickly outwards causing the drill to spin. The momentum of the fly wheel causes the cord to wrap back around the spindle in the other direction. When it stops the cords are pulled outwards again and the drill spins in the other direction.

I made the first one with a stone flywheel then made fire with it in the same way I make fire with fire sticks. Then I made and fired some clay fly wheels, made another drill with one of the fly wheels and fitted a stone drill bit to the end. This one I use for drilling holes in wood.

I used the new drill to make a hole in a piece of wood. I then put the spindle of the original cord drill through the hole in the wood, tied the ends of the cord onto the piece of wood and it became a pump drill. The cords were wrapped round the spindle as normal but now a pumping action of the wooden cross bar created the same action.

This was an interesting project. For fire making I’d stick to fire sticks because the equipment is easier to make. But for people with soft hands they could use the cord drill as it won’t give them blisters. It should be added that the pump drill actually took longer than the cord drill (cord: 32 seconds, pump 1 min 30 seconds -the pump drill scene was edited down to make it watchable). The pump drill had more moving parts and was constantly having problems. As a fire making method I’d choose the cord drill over the pump drill unless all the parts were well made.

The main purpose I’d use these tool for is drilling holes rather than fire making. It was reasonably good but the stone bits I made could be improved and their attachment to the shaft also needs some thought. If the bit loosens and gets off axis slightly the whole thing wobbles.

These drills are impressive inventions and show potential for carpentry use later on.

5. Primitive Technology: Charcoal


Добавлено: 19 февр. 2016 г.

I made a batch of charcoal using the mound method then stored it in baskets for later use. Charcoal is a fuel that burns hotter than the wood it’s made from. This is because the initial energy consuming steps of combustion have taken place while making the charcoal driving off the volatile components of the wood (such as water and sap). The result is a nearly pure carbon fuel that burns hotter than wood without smoke and with less flame. Charcoal was primarily a metallurgical fuel in ancient times but was sometimes used for cooking too.

To make the charcoal the wood was broken up and stacked in to a mound with the largest pieces in the center and smaller sticks and leaves on the out side. The mound was coated in mud and a hole was left in the top while 8 smaller air holes were made around the base of the mound. A fire was kindled in the top of the mound using hot coals from the fire and the burning process began (the hot coals are being poured in the top using a small pot at 2:38).

The fire burned down the inside of the mound against the updraft. I reason that this is a better way to make charcoal as the rising flames have used up the oxygen and prevent the charcoal already made above them from burning while driving out even more volatiles .

I watched the air holes at the base of the mound and when the fire had burned right up to each opening I plugged them with mud. Once all 8 holes had be sealed the hole in the top of the mound was sealed with mud and the mound left to cool. From lighting the mound to closing up the holes the whole process took about 4 hours.

The next day when the mound was cool to the touch (this can take about 2 days sometimes) I opened the mound. The resulting charcoal was good quality. Some wood near the air entries had burned to ash though these were only small twigs and leaves. This is the reason small brush is put on the out side of the mound, to be burned preferentially to the larger wood on the inside thus protecting the large pieces of charcoal.

The charcoal that was made was hard and shiny. When broken open it had the ray structure of the wood preserved. When moving the hand through it the charcoal sounded tinny, like coral on a beach being moved by waves. These are signs of good quality. Bad charcoal is soft, breaks easily and has a muffled sound.

I intend to use the charcoal to produce hotter fires than I’m able to with wood alone. From my research, a natural draft furnace using wood (a kiln) can reach a maximum of 1400 c degrees whereas a natural draft furnace using charcoal can reach 1600 c degrees. Achieving high temperatures is necessary for changing material to obtain better technology (e.g. smelting ore into metal).

6. Primitive Technology: Woven bark fiber


Добавлено: 29 апр. 2016 г.

Woven Bark Fibre
I made a rough type of textile from bark fibre. This is the same tree I use for making cordage though I don’t know its name. It has been raining a lot here lately (the video also shows how well the hut stands up to rain) and this caused a large wattle tree to fall down taking a few smaller trees with it. One of the trees was the type I use for fibre. So I stripped the bark from it and divided it into thinner strips back at the hut.

I spun the fibre strips into a rough yarn using a drop spindle. The drop spindle was basically the spindle and fly wheel I used in the pump drill video I made a while ago. A small stick was tied to the top of the drop spindle to act as a hook to make sure the fibres spun. I tied bark strips to the spindle and spun the spindle so it twisted the strip. When one strip ran out a new strip was added and twisted into the thread.

I then made a loom by hammering stakes into the ground and lashing cross bars to it. Stakes were hammered into the ground to hold every first string while a moveable cross bar held every second string. When the bar was lifted a gap was formed where every second string was above every first string. Then when the bar was dropped a gap was formed where the opposite was true. So in this way the weaving thread could be drawn through over and under one way and then under over back the opposite way. The alternative was to weave by hand which would have taken longer.

Collecting, stripping and drying the fibre took a few days to do. Spinning and weaving took just over a day per 70 cm square. The result was a rough material about as stiff as a welcome mat. So at this stage I’m using them as mats. In future I will investigate finer fibres, such as those from banana stalks, as a possible material for cloth. They take more processing but produce a finer product. I may also make a permanent, portable loom that can be taken indoors when it rains.

7. Primitive Technology: Sweet potato patch


Добавлено: 20 мая 2016 г.

I built a fenced enclosure and cultivated sweet potatoes (from civilisation) and yams (from the wild) in it. I originally had a small 3X3 m garden behind the wattle and daub hut that already had some sweet potato and yam vines growing in it that were planted after the hut was built. But wallabies kept eating the leaves. So I made a wattle enclosure around it to keep them out. Wood ash was added to the soil to provide potassium and phosphorus for the growing tubers.

The previous small garden was organised in rows (not seen in this video) but this was hard to water during dry weather. So I re-organised the patch into 1 meter wide mounds with pits in the centre. Vines were planted into the mounds and water poured into the centre of each mound watered the vines. So then I had a small garden with 9 mounds contained within it. I decided to enlarge the patch to fit in more mounds so I took out 2 sides of the fence and extended them by a meter each. So the patch ended up being 4X4m and contained 16 mounds. In addition to wood ash, leaf mould was added to the mounds for fertility and to reduce loss of moisture.

The patch, being in the dark forest understory, received only about 2-3 hours of direct sunlight per day so the yield was disappointingly small. Nevertheless, the patch produced a few small sweet potatoes and a single larger yam. I also picked some green growing tips of the sweet potato vine that can also be eaten. I boiled the greens slightly in a pot with a hot stone and ate the leaves. I then roasted the sweet potatoes and yam in the coals of the fire. The sweet potatoes (purple fleshed tuber) taste sweet and starchy whereas the yam (white fleshed tuber) tastes similar to an ordinary potato. After eating, I took the wood ash from the fire and poured it back into the mounds that were harvested, replanted them and watered them. In future I’d plant the sweet potatoes in an area that receives much more sunlight in order to dramatically increase production. I’ve grown the same variety at home and it produces a much greater quantity and size of tubers in full sun. Wood ash also tends to increase tuber yield and so is a good use for waste ash.

The sweet potato is a remarkable plant. It’s a staple food of many traditional cultures. NASA has considered it a potential crop to be grown on spaceships for long term missions. In terms of energy production it’s only 3rd behind sugar cane and cassava. It produces the most food value (a combination of edible energy and nutrition) of any crop per unit space and time. A study of Fijian farms using manual labour showed that ratio of energy put into farming vs yield of energy was 1:17 for rice and 1:60 for sweet potato. It grows on marginal soil and doesn’t require much nitrogen to grow. It takes a relatively short growth period of 3-4 months to yield. All parts of the plant can be eaten including the leaves which provide additional protein and nutrients. I grow the purple variety (because it tastes better in my opinion) but all varieties are nutritious and will stave off malnutrition. A person could potentially be nearly self-sufficient from a small plot of sweet potatoes. Note that in colder climates, regular potatoes could be grown instead of sweet potatoes.

8. Primitive Technology: Grass hut


Добавлено: 3 июл. 2016 г.

I built this grass hut up on a ridge. It’s roughly parallel with the tiled hut and wattle and daub hut that are a couple of hundred meters away down in a valley. I built it on a ridge to get away from mosquitoes in wet weather. This project took 7 days to make. I looked for a spot and cleared it on the first day, built the frame on the second, and spent the next 5 collecting grass. The type of grass is Guinea grass, an introduced species here in Australia meant for live stock. This grass is difficult to collect in this dry forest and I had to climb further into the mountain to get it.

The design is a simple pointed dome that’s easy to build. The tools used were simply sharp stones and a digging stick. It’s 2.5 m wide and 2 m tall. 8 lawyer cane strips were driven into the ground to form the ribs of the structure and hoops of cane were put over this to attach the grass to. Vine was used to tie the frame together and to tie handfuls of long grass to it. When the hut was almost finished a cap was made and lifted onto the top of the dome to finish it.

This hut is easy to build and houses a large volume. The shape is wind resistant and strong for it’s materials. Gaps can be seen in the thatch but not if viewing from directly underneath meaning that it should shed rain well. A fire should be possible in the hut as long as it’s small and kept in a pit in the center.The reason the hut took so long is due to the scarcity of grass on the hill. It could be built much quicker in a field.

9. Primitive Technology: Forge Blower


Добавлено: 29 июл. 2016 г.

I invented the Bow Blower, a combination of the bow drill and forge blower to make a device that can force air into a fire while being easy to construct from commonly occurring natural materials using only primitive technology. I began by fanning a fire with a piece of bark to increase its temperature. It is this basic principle I improved on throughout the project.

Next, I made a rotary fan from two pieces of bark that slot together at right angles to each other to form a simple 4 bladed paddle wheel about 20 cm in diameter and 5 cm tall. The blades of the fan were not angled and were designed only to throw air outwards away from the axle when spun. The rotor of the fan was made by splitting a stick two ways so it formed 4 prongs. The fan was then inserted into the prongs and the end lashed to hold it in place.

Spinning the fan rotor back and forth between the palms of the hands fanned the fire. But only some of the wind generated by the fan reached the fire. The rest of it was blowing in other directions, effectively being wasted.

So I built a fan housing from unfired clay to direct the air flow into the fire. This was basically an upturned pot with a hole in the top, a spout coming out of the side. The housing was about 25 cm wide and 8 cm tall. The hole in the top and the spout were both about 6 cm in diameter so that the air coming in roughly equalled the air coming out. The base of the fan rotor sat in a wooden socket placed in the ground to make it spin easier and the top of the rotor protruded from the hole in the top of the housing.

Now when the fan spun, air entered the hole in the top of the housing and exited the spout in the side. Importantly, it doesn’t matter which way the fan spins, air always goes into the inlet and out the spout. Air is thrown out towards the walls of the housing and can only leave through the spout while the vacuum in the centre sucks new air into the housing through the inlet. A separate clay pipe called a tuyere was made to fit over the spout to direct air into the coals. This was done because the pipe that touches the fire can melt away so it’s better to make this part replaceable.

Instead of making a large wheel and belt assembly to step up the speed of rotation, I opted for a 75 cm long bow. I made a frame to hold the rotor in place consisting of two stakes hammered into the ground with a socketed cross bar lashed on to hold the top of the rotor. I made bark fibre cordage and tied the end to a stick. I then looped the cord around the rotor and held the other end in the same hand holding the stick. I then pushed and pulled the bow causing the rotor to spin rapidly, forcing air into the fire.

I made a simple mud furnace for the blower. Then I collected orange iron bacteria from the creek (iron oxide), mixed it with charcoal powder (carbon to reduce oxide to metal) and wood ash (flux to lower the melting point) and formed it into a cylindrical brick. I filled the furnace with charcoal, put the ore brick in and commenced firing. The ore brick melted and produced slag with tiny, 1mm sized specs of iron through it. My intent was not so much to make iron but to show that the furnace can reach a fairly high temperature using this blower. A taller furnace called a bloomery was generally used in ancient times to produce usable quantities of iron and consumed more charcoal, ore and labour.

This device produces a blast of air with each stroke of the bow regardless of whether it is pushed or pulled. The bow makes it possible to operate the blower without using a complicated belt and wheel assembly used in traditional forge blowers. There is a brief pause at the end of each stroke where the fan stops to rotate in the other direction, but this is effectively no different to the intermittent blast of a double acting bellows of Europe or box bellows of Asia. The materials used (wood, bark, bark fibre and clay) are readily available on most continents. No leather, valves or precisely fitted piston gaskets are required as with other types of bellows. The cords for this device wear out often so a number of back up cords should be kept handy for quick replacement. In summary, this is an easy to make device that solves the problem of supplying forced combustion air required for high temperature furnaces and forges.

10. Primitive Technology: Barrel Tiled Shed


Добавлено: 16 сент. 2016 г.

I built a tiled roof shed to provide a fire and rain proof shelter for working on projects during wet weather and for storing firewood. The shed houses the very kiln used to fire its own tiles.

I cut timber using the stone hatchet and took it to the building site. 6 Upright posts were stuck into the ground about half a meter. Mortices were cut into the horizontal beams using a stone chisel to start with, then had there mortices enlarged using hot coals and a blow pipe to burn them out more. These beams were put in place and rafters were lashed on with lawyer cane. The wood that the tiles sit on are about 50 cm apart. The finished frame was 2 x 2 m in floor plan, 2 m tall at the ridge line and 1.5 m tall at the sides. This roof angle is about 22.5 degrees, half the pitch of the huts I usually make. This took about a week but I did it about 4 months ago and left the wood at the site because I was busy on other videos
Next I made a kiln. I made a basket to make it easier to carry clay from the creek. I dug a trench for the firebox of the kiln and made a clay vault over it using stick arches to support it. Holes were put into the vault to let flames through. The kiln shape was a cube with a domed roof. It was made of mud on site (clay from the creek is too good to build a kiln with and is best used for pottery). Grate bars were put into the firebox to increase wood burning efficiency by letting air come up through the wood rather than over it. This only took about 3 days to build letting it dry slowly.

To make the tiles, clay was collected and had the sticks and stones taken out of it. Then I crushed up old broken pottery and tiles I made before which I mixed with the clays as grog (stops clay from cracking). A tile frame was made from a split piece of lawyer cane bent into a trapezoidal shape about 50 cm long, 20 cm at the wide end and 16 cm at the narrow end. This was put on a flat stone. Wood ash was put down to stop the clay sticking to the rock. The clay was pressed into the fame and the wet tile was slid onto a curved piece of wood to form the curved shape of the barrel tile. The tile was then moved immediately to a flat area and the piece of wood was slid out so the tile sat on the ground to dry. Being curved, air could get under the tile to help dry it out.

I could make 30 tiles easily in a day and only had 150 to make. But it kept raining and destroying the tiles before they dried. So I had to make 30 tiles, let them dry enough to be moved, then take them to the tiled hut where they were force dried on the ondol (fire heated bed). The majority of the time spent on this project was re-making broken tiles due to unseasonal rain (I don’t think we have a proper dry season here anymore, this is what held up my other tiled hut too). So this whole part probably took 4 weeks.

Firing the tiles was easy compared to the other tiled hut I built. I could fit 30 tiles in the kiln at once and had 150 tiles to fire. The 5 firings took 5, 4.5, 3.5, 4.5 and 3.5 hours. The first one probably took longer due to the kiln not being dry yet and the 4th firing took a while due to wet firewood. Tiling the roof was also easy. Starting at one end, tiles were laid so that the concavity faced up and the narrow end pointed into the next tile below acting like a shoot for water to run down. The gaps between these tiles was covered using a tile with the concavity facing down and the narrow end pointing up under the next tile above. The ridge of the hut was covered with the same tiles interlocking to keep rain out. The low roof pitch, the weight and friction of the tiles, the fact that they interlock all help to keep the tiles in place meaning they don’t need tabs or pegs to hold them in place.

The roof sheds rain and is fireproof. This will provide a workplace for fire related projects in all weather. Walls were not built as this is a place for working and storing firewood, not sleeping and staying warm. Also, light can come in so it’s easy to see during work. The kiln worked ok and was able to handle a larger volume of tiles than the previous kiln I built (having over 4 times the volume) though I might investigate better kiln designs in future to attain higher temperatures and use less firewood. The roof of this shed has a lower angle to my other huts meaning it has more headroom. Ideally barrel tiles should be used at about 30 degrees as opposed to the 22.5 I used but being a small shelter I don’t think the water will build up and seep through. A large house would use a slightly steeper angle.